Abstract
The aim of this study was to evaluate the shrinkage, contraction stress, tensile modulus, and the flow factor of 17 commercially available dental resin composites. The volumetric shrinkage measurements were performed by mercury dilatometry, and the contraction stress and tensile modulus were determined by means of stress-strain analysis. The statistical analysis was conducted by ANOVA and Tukey's post hoc test, and linear regression. Strong linear correlation for most resin composites were found for (i) contraction stress and shrinkage (ii) contraction stress and tensile modulus, and (iii) shrinkage and tensile modules. For most of the materials the unpolymerized resin content determines the amount of shrinkage, contraction stress and tensile modules. The pre-polymerized clusters in Heliomolar results in improved shrinkage/contraction stress properties. The shrinkage/contraction stress for Filtek Z100, Aelite Flo, and Flow-it was too high for the amount of resin in the resin composite. This was rationalized by high polymerization rates, a flow factor, and the nature of the resin. High shrinkage and/or high contraction stress may lead to failure of the bond between the resin composites and the tooth structure. This study shows that the unpolymerized resin content determines the amount of shrinkage, contraction stress and tensile modules. Therefore, using pre-polymerized clusters will improve shrinkage/contraction stress properties, as was shown in Heliomolar, while high polymerization rates, and low flow factors have a deteriorative effect on the shrinkage/contraction stress properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.