Abstract

The hydration of polar natural and synthetic lipids yields a variety of lipid phases including various inverted cubic phases and the inverted hexagonal (HII) phase. The HII phase can be considered as aqueous columns encased with a monolayer of lipids and arranged in a hexagonal pattern. The polar head groups are well-ordered at the water interface, whereas the lipid tails are disordered to fill the volume between the tubes of water. A particularly interesting characteristic of the HII phase is the large temperature effect on the basis vector length d of the hexagonal lattice. Previous studies indicate that polymerization of the lipid region of the HII phase might reduce the sensitivity of the basis vector to temperature. A phosphoethanolamine (PE) was designed and synthesized with dienoyl groups in each lipid tail in an attempt to cross-link the lipids around and along the water core of the HII phase. The synthesis of the the PE was accomplished by acylation of 3-(4-methoxybenzyl)-sn-glycerol with 2,4,13-...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.