Abstract

AbstractDicyclopentadiene was polymerized by reaction injection molding (RIM) using a catalyst system based on WCl6 and diethylaluminium chloride. Ring opening polymerization results in formation of a crosslinked polymer with a high crosslink density. The kinetics of the fast exothermic reaction was followed by the adiabatic temperature rise method. In addition to the “adiabatic” polymerization, isothermal reactions were carried out in a thin mold. The properties of the cured samples were determined by dynamic mechanical measurements, solgel analysis, gas chromatography, mass spectrometry, DSC, and IR spectrometry. Gel fraction, glass transition temperature, content of the unreacted monomer, the modulus, and the degree of swelling were used to characterize the cured samples. The system shows very low critical conversion at the gel point (αc < 0.01) proving a chainwise mechanism of the polymerization. Possible participation of a cationic mechanism is discussed. We found the specific reaction temperature range (T = 100–140°C) for optimum properties of the cured samples. Deterioration of properties (decrease in the crosslinking density, etc.) at a high temperature is a result of a faster deactivation of catalytic centers and a reversibility of the exothermic ring opening polymerization. Reverse cyclodegradation is preferred at a higher temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.