Abstract

AbstractMethyl acrylate and styrene have been copolymerized in the presence of zinc chloride either by photoinitiation or spontaneously. The copolymerization mechanism is investigated by analyses of copolymers composition and monomer sequence distribution. The resulting copolymers are not always alternating, their composition being dependent especially on the monomer feed ratio. Appreciable deviation to higher methyl acrylate unit content from an equimolar composition occurs at monomer feed fractions of methyl acrylate over 0.7. The larger deviation is induced by higher temperature, by photoirradiation, and by greater dilution of the reaction mixture with toluene. The 13C‐NMR spectrum of the alternating copolymer shows a sharp singlet at the carbonyl region, whereas the spectra of random copolymers prepared by benzoyl peroxide initiation at 60°C show a triplet splitting at the carbonyl carbon region, irrespective of copolymer composition. The relative intensities of the triplet peaks for the random copolymers are in good correspondence to the contents of triad sequences calculated by means of conventional radical copolymerization theory. These results clearly indicate that the carbonyl splitting is caused predominantly by variation of the monomer sequence and not by variation of the stereosequence. The monomer sequence distribution in the copolymers is thus directly and quantitatively measured from the split carbonyl resonance. Although the same triplet splitting appears in the spectra of methyl acrylate–rich copolymers prepared in the presence of zinc chloride at high feed ratios (>0.7) of methyl acrylate, the relative intensities of the split peaks do not fit the sequence distributions of random copolymers calculated by means of the Lewis–Mayo equation. The copolymerization yielding these peculiar sequences and the alternating sequence in the presence of zinc chloride is fully comprehended by a copolymerization mechanism proceeding between two active coordinated monomers, i.e., the ternary molecular complex composed of zinc chloride, methyl methacrylate, and styrene, and the binary molecular complex composed of zinc chloride and methyl methacrylate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.