Abstract

AbstractAlternating copolymerizations of methyl methacrylate with styrene in the presence of boron trichloride at 0°C in 1,2‐dichloroethane were carried out by using benzoyl peroxide as an initiator. Conversion increased proportionally with polymerization time, whereas the degree of polymerization was constant irrespective of time. The rate depended linearly on the square root of the concentration of benzoyl peroxide. The equilibrium constants for the formation of the ternary molecular complex composed of methyl methacrylate, styrene, and boron trichloride in 1,2‐dichloroethane at −20, −10, and +4°C were determined by 1H‐NMR spectroscopy. The concentrations of the ternary molecular complex in the polymerization mixtures were evaluated from the equilibrium constant of the formation. The rate of the alternating copolymerization was proportional to the first order of the concentration of the ternary molecular complex. The distribution of methyl methacrylate‐centered triads in the alternating copolymer was different from that of styrene‐centered triads. These results can be explained by a mechanism involving the homopolymerization of a ternary molecular complex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.