Abstract

Polymerizations of biodegradable lactide and lactones have been the subjects of intense research during the past decade. They can be polymerized/copolymerized effectively by several catalyst systems. With bis(phenolate)-amine aluminum complex, we have shown for the first time that lactide monomer can deactivate the aluminum complex during the ongoing polymerization of ε-caprolactone to a complete stop. After hours of dormant state, the aluminum complex can be reactivated again by heating at 100 °C without the addition of any external chemicals still giving polymer with narrow dispersity. Studies using NMR, in situ FTIR, and single-crystal X-ray crystallography indicated that the coordination of the carbonyl group in lactyl unit was responsible for the unusual behavior of lactide. In addition, the unusual methyl-migration from methyl lactate ligand to the amine side chain of the aluminum complex was observed through intermolecular nucleophilic-attack mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.