Abstract

The density functional theory on the level of B3LYP/6–31G was empolyed to study the chain growth mechanism in polymerization process of α-linear olefin in TiCl3/AlEt2Cl catalytic system to synthesize drag reduction agent. Full parameter optimization without symmetry restrictions for reactants, products, the possible transition states, and intermediates was calculated. Vibration frequency was analyzed for all of stagnation points on the potential energy surface at the same theoretical level. The internal reaction coordinate was calculated from the transition states to reactants and products respectively. The results showed as flloes: (i) Coordination compounds were formed on the optimum configuration of TiCl3/AlEt2Cl. (ii) The transition states were formed. The energy difference between transition states and the coordination compounds was 40.687 kJ/mol. (iii) Double bond opened and Ti–C(4) bond fractured, and the polymerization was completed. The calculation results also showed that the chain growth mechanism did not essentially change with the increase of carbon atom number of α-linear olefin. From the relationship between polymerization activation energy and carbon atom number of the α-linear olefin, it can be seen that the α-linear olefin monomers with 6–10 carbon atoms had low activation energy and wide range. It was optimum to synthesize drag reduction agent by polymerization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call