Abstract

To evaluate the kinetics of polymerization and shrinkage stress of resin cements, as well as their bond strength to dentin after 24-h or one-year water storage. Three conventional resin cements were evaluated: RelyX Ultimate (RUL), Panavia V5 (PNV), and Multilink N (MLN); and three self-adhesive resin cements: RelyX Unicem 2 (RUN), Panavia SA Cement Plus (PSA), and G-CEM LinkAce (GCL). Degree of conversion (DC), maximum polymerization rate (RPmax) and gel time values were obtained using Fourier-transform infrared spectroscopy (FTIR/ATR). Shrinkage stress values were determined with a tensiometer, using a universal testing machine (n=5). Indirect resin composite restorations (Solidex) were fabricated and cemented to the dentin surface using self-adhesive resin cements, or conventional resin cements with self-etching adhesive (n=5). Bonding performance was evaluated with the microtensile bond strength (µTBS) test after 24 h or one year of water storage. MLN exhibited a higher DC (76.7%), whereas the percentage of other materials differed slightly (ranging from 54% to 58.5%). The RPmax and shrinkage stress values differed significantly between the cements. PSA showed the longest gel time. Significantly higher µTBS were observed for conventional resin cements after 24-h and one-year storage; a decrease in µTBS was observed for MLN only. Self-adhesive resin cements may not perform as well as conventional resin cements. Although both categories of cements presented similar polymerization kinetics and shrinkage values, the self-adhesive resin cements showed lower µTBS compared to those of conventional resin cements. Nevertheless, storage time only affected the bonding performance of MLN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call