Abstract
Temporal evolution of polymerization-induced spinodal decomposition (PISD) under electric fields was investigated numerically in ethylene glycol∕phenolic resin solutions with different initial composition. A model composed of the nonlinear Cahn-Hilliard-Cook equation for spinodal decomposition and a rate equation for curing reaction was utilized to describe the PISD phenomenon. As initial composition varied, deformed droplet-like and aligned bi-continuous structures were observed in the presence of an electric field. Moreover, the anisotropic parameter (D), determined from the 2D-FFT power spectrum, was employed to quantitatively characterize the degree of morphology anisotropy. The value of D increased quickly in the early stage and then decreased in the intermediate stage of spinodal decomposition, which was attributed to the resistance of coarsening process to morphology deformation and the decline of electric stress caused by polymerization reaction. The results can also provide a guidance on how to control the morphology of monolithic porous polymer and carbon materials with anisotropic structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.