Abstract

Objective To ascertain the efficacy of polymerization of self-etching dental adhesives in different solvent evaporation conditions. Material and methods Four self-etching adhesive systems were studied. Two of them are classified as mild two-step self-etching adhesives (Clearfil SE Bond, Protect Bond) and the other two are strong one-step systems (Xeno III, ADP-Prompt-L-Pop). The influence of temperature and duration of the air-drying period on photo-polymerization was followed by: gravimetry, 1H solid-state NMR spectroscopy and stray-field MRI. The evolution of proton magnetization with irradiation time was recorded and correlated with volumetric polymerization shrinkage and extent of reaction; evaporation and hardening effects were identified. Results Main variables determining water-solvent evaporation of the tested adhesives are: (1) water/HEMA relative concentration, (2) presence of photoinitiator compounds in the primer (SEB) and (3) presence of ethanol (XENO). SEB shows the highest extent of photo-polymerization of the tested adhesives. The lowest volumetric contraction was obtained for APLP and XENO and the attempt to remove the solvents did not increase the extent of polymerization significantly. Conclusions Temperature increase following photo-polymerization reaction is dominant towards the effect of the drying step for solvent evaporation in self-etching systems. Attempts to remove the solvents did not increase the extent of polymerization, so other problems are impairing the polymerization of one-step adhesives. Clinical significance The use of tested one-step adhesives is discouraged as the attained low extent of polymerization may lead to low bond strength, high susceptibility to degradation and also will favor a continuing etching effect on the underlying dentin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.