Abstract

The polymerization dynamics of double-stranded polymers, such as actin filaments, is investigated theoretically using simple chemical kinetic models that explicitly take into account some microscopic details of the polymer structure and the lateral interactions between the protofilaments. By considering all possible molecular configurations, the exact analytical expressions for the growth velocity and dispersion for two-stranded polymers are obtained in the case of the growing at only one end, and for the growth from both polymer ends. Exact theoretical calculations are compared with the predictions of approximate multilayer models that consider only a finite number of the most relevant polymer configurations. Our theoretical approach is applied to analyze the experimental data on the growth and fluctuations dynamics of individual single actin filaments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call