Abstract
Depolymerization breaks down polymer chains into monomers like unthreading beads, attracting more attention from a sustainability standpoint. When polymerization reaches equilibrium, polymerization and depolymerization can reversibly proceed by decreasing and increasing the temperature. Here, we demonstrate that such dynamic control of a growing polymer chain in a selective solvent can spontaneously modulate the self-assembly of block copolymer micellar nano-objects. Compared to polymerization-induced self-assembly (PISA), where irreversible growth of a solvophobic polymer block from the end of a solvophilic polymer causes micellization, polymerization/depolymerization-induced self-assembly presented in this study allows us to reversibly regulate the packing parameter of the forming block copolymer and thus induce reversible morphological transitions of the nano-objects by temperature swing. Under the coupled equilibria of polymerization with self-assembly, we found that demixing of the growing polymer block in a more selective solvent entropically facilitates depolymerization at a substantially lower temperature. Taking ring-opening polymerization of δ-valerolactone initiated from the hydroxyl-terminated poly(ethylene oxide) as a model system, we show that polymerization/depolymerization/repolymerization leads to reversible morphological transitions, such as rod-sphere-rod and fiber-rod-fiber, during the heating and cooling cycle and accompanied by changes in macroscopic properties such as viscosity, suggesting their potential as dynamic soft materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.