Abstract
Current dental resin undergoes phase separation into hydrophobic-rich and hydrophilic-rich phases during infiltration of the over-wet demineralized collagen matrix. Such phase separation undermines the integrity and durability of the bond at the composite/tooth interface. This study marks the first time that the polymerization kinetics of model hydrophilic-rich phase of dental adhesive has been determined. Samples were prepared by adding varying water content to neat resins made from 95 and 99wt.% hydroxyethylmethacrylate and 5 and 1wt.% (2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl1]-propane prior to light curing. Viscosity of the formulations decreased with increased water content. The photopolymerization kinetics study was carried out with a time-resolved Fourier transform infrared spectrometer. All of the samples exhibited two-stage polymerization behavior which has not been reported previously for dental resin formulation. The lowest secondary rate maxima were observed for water contents of 10–30wt.%. Differential scanning calorimetry (DSC) showed two glass transition temperatures for the hydrophilic-rich phase of dental adhesive. The DSC results indicate that the heterogeneity within the final polymer structure decreased with increasing water content. The results suggest a reaction mechanism involving both polymerization-induced phase separation and solvent-induced phase separation for the model hydrophilic-rich phase of dental resin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.