Abstract

Liquid free ion-conductive elastomers (ICEs) have demonstrated promising potential in various advanced application scenarios including sensor, artificial skin, and human-machine interface. However, ICEs that synchronously possess toughness, adhesiveness, stability, and anti-bacterial capability are still difficult to achieve yet highly demanded. Here, a one-pot green and sustainable strategy was proposed to fabricate multifunctional ICEs by extracting non-cellulose components (mainly lignin and hemicellulose) from lignocellulose with polymerizable deep eutectic solvents (PDES) and the subsequent in-situ photo-polymerization process. Ascribing to the uniform dispersion of non-cellulose components in PDES, the resultant ICEs demonstrated promising mechanical strength (a tensile strength of ~1200 kPa), high toughness (~9.1 MJ m−3), favorable adhesion (a lap-shear strength up to ~61.5 kPa toward metal), conducive stabilities, and anti-bacterial capabilities. With the help of such advantages, the ICEs exhibited sensitive (a gauge factor of ~23.5) and stable (~4000 cycles) performances in human motion and physiological signal detection even under sub-zero temperatures (e.g., −20 °C). Besides, the residue cellulose can be mechanically isolated into nanoscale fibers, which matched the idea of green chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.