Abstract

A pilot-scale tubular reactor fitted with in-line static mixers is experimentally and theoretically evaluated for the polymerisation of methyl methacrylate (MMA). A non-isothermal and non-adiabatic axially dispersed plug-flow model is used to describe the flow characteristics of the reactor. The model is applied to the polymerisation of a concentrated MMA solution (up to 72% (v/v)). Key model parameters were attained through independent bench and pilot-scale experiments. Measured monomer conversions and polymer molecular weight were accurately predicted by model simulation. The presence of static mixers is shown to give near-ideal plug-flow operation for the experimental conditions of this study. Furthermore, an approximately four-fold increase in overall heat transfer coefficient is indicated due to the radial mixing incited by the mixers. Studies also demonstrated the importance of inhibitor kinetics on the dynamic and steady-state performance of the reactor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.