Abstract

The combination of chemotherapy and photodynamic therapy (PDT) has promising potential in the synergistic treatment of cancer. However, chemotherapy and photodynamic synergistic therapy are impeded by uncontrolled chemotherapeutics release behavior, targeting deficiencies, and hypoxia‐associated poor PDT efficacy in solid tumors. Here, a platinum nanozyme (PtNP) loaded reactive oxygen species (ROS)‐responsive prodrug nanoparticle (CPT‐TK‐HPPH/Pt NP) is created to overcome these limitations. The ROS‐responsive prodrug consists of a thioketal bond linked with camptothecin (CPT) and photosensitizer‐2‐(1‐hexyloxyethyl)‐2‐devinyl pyropheophorbide‐a (HPPH). The PtNP in CPT‐TK‐HPPH/Pt NP can efficiently catalyze the decomposition of hydrogen peroxide (H2O2) into oxygen to relieve hypoxia. The production of oxygen can satisfy the consumption of HPPH under 660 nm laser irradiation to attain the on‐demand release of CPT and ensure enhanced photodynamic therapy. As a tumor diagnosis agent, the results of photoacoustic imaging and fluorescence imaging for CPT‐TK‐HPPH/Pt NP exhibit desirable long circulation and enhanced in vivo targeting. CPT‐TK‐HPPH/Pt NPs effectively inhibit tumor proliferation and growth in vitro and in vivo. CPT‐TK‐HPPH/Pt NP, with its excellent ROS‐responsive drug release behavior and enhanced PDT efficiency can serve as a new cancer theranostic agent, and will further promote the research of chemophotodynamic synergistic cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.