Abstract

Synthesis of light polymer nanocomposites with high strength and toughness has been a significant interest for its potential applications in industry. Herein, the authors have synthesized polymerization-induced self-assembly (PISA) derived nanodimensional polymeric worm (fiber) reinforced polymer nanocomposites by a simple and environmentally friendly synthesis process without the addition of volatile organic compounds. PISA-derived worms with a core-forming block of low glass transition temperature (Tg ≈27.1°C) comprising poly(styrene-stat-n-butyl acrylate) have been employed as reinforcing filler. The influence of core-segment cross-linking on reinforcement efficiency has been explored by comparing noncross-linked worms, and worms cross-linked with a small amount of ethylene glycol diacrylate introduced at t=0h or t=2h of polymerization. Upon addition of 1wt% of noncross-linked, t=0h cross-linked, and t=2h cross-linked worms, toughness of polymer nanocomposites can be enhanced by 62%, 114%, and 120%, respectively. The results suggest that the reinforcement efficiency of worms is significantly influenced by the cross-linking of core-segments regardless of cross-linking methods. This work broadens the understanding in application of PISA-derived worms as reinforcing filler by demonstrating the efficient reinforcement with low Tg worms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call