Abstract

exo-Polynorbornenes containing bis(trifluoromethyl)biphenyl side groups were synthesized by ring-opening metathesis polymerization using different Grubbs' catalysts, the microstructures of the polymer chains were established using NMR and IR spectroscopy. The influence of monomer and catalyst structures on chain microstructure was revealed and the correlation of properties with microstructure was investigated in detail. The exo-poly(N-3,5-bis(trifluoromethyl)biphenyl-norbornene-pyrrolidine) (exo-PTNP) and exo-poly(N-3,5-bis(trifluoromethyl)biphenyl-norbornene-dicarboximide) (exo-PTNDI) formed using Ru-I show a trans double bond bias of 67% and 83%, respectively, whereas the corresponding polymers formed using Ru-III have lower contents of trans double bond, 30% and 50%, respectively. Compared to the highly trans endo-PTNP formed using Ru-I, which is isotactic and has a dielectric constant of about 20, the endo-PTNP formed using Ru-III, the exo-PTNDIs and the exo-PTNPs formed using Ru-I and Ru-III all have different proportions of trans and cis double bonds, they are atactic and display relatively low dielectric constants, in the range 6 to 9. DSC measurements indicate some dependence of Tg, varying 161 to 221 °C, on tacticity and cis/trans ratios with higher trans contents tending towards higher Tg. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4786–4798

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.