Abstract

Although PEG remains the gold standard for stealth functionalization in drug delivery field up to date, complete inhibition of protein corona formation on PEG-coated nanoparticles remains a challenge. To improve the stealth property of PEG, herein an α-glutamyl group was conjugated to the end of PEG and polymeric micelles with α-glutamyl-terminated PEG shells were prepared. After incubation with bovine serum albumin or in fetal calf serum, the size of the micelles changed slightly, while the size of the micelles of similar diblock copolymer but without α-glutamyl group increased markedly. These results indicated that the micelles with α-glutamyl-terminated PEG shells showed low non-specific protein adsorption. In vivo blood clearance kinetics assay showed that the micelles with α-glutamyl-terminated PEG shells exhibited a longer in vivo blood circulation time compared with similar micelles but without α-glutamyl groups. The better stealth property of the micelles with α-glutamyl-terminated PEG shells was presumably attributed to the zwitterionic property of the α-glutamyl groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.