Abstract
Most of current metal halide materials, including all inorganic and organic-inorganic hybrids, are crystalline materials with poor workability and plasticity that limit their application scope. Here, we develop a novel class of materials termed polymeric metal halides (PMHs) through introducing polycations into antimony-based metal halide materials as A-site cations. A series of PMHs with orange-yellow broadband emission and large Stokes shift originating from inorganic self-trapped excitons are successfully prepared, which meanwhile exhibit the excellent processability and formability of polymers. The versatility of these PMHs is manifested as the broad choices of polycations, the ready extension to manganese- and copper-based halides, and the tolerance to molar ratios between polycations and metal halides in the formation of PMHs. The merger of polymer chemistry and inorganic chemistry thus provides a novel generic platform for the development of metal halide functional materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.