Abstract

ABSTRACTA polymeric liquid crystalline film was fabricated by photo-induced diffusion and mesogenic phase structural transition of photopolymerisable acrylate monomer mixtures that presented phase transition between cholesteric (Ch) and smectic (SmA) phases. By controlling the curing temperature to be close to SmA–Ch phase transition, a novel architecture that combined Ch and SmA-like short-range ordering (SSO) nanostructures was obtained, which reflected light with the wavelength from 0.5 to 11.5 µm. Experimental results showed that the existence of UV-absorbing dye and curing temperature were critical for the creation of asymmetrical super wide pitch gradient distribution. Moreover, the reflection wavelength and bandwidth of the cholesteric liquid crystal (CLC) films were tuneable by adjusting proportion of the compounds, and the bandwidth could be broadened up to 13 μm. It was expected to have great potential applications in fields like architectural energy conservation or infrared-stealth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.