Abstract

Polymeric calcium phosphate cements (PCPC) derived from biodegradable poly-g-glutamic acid (g-PGA) were prepared in an attempt to improve the mechanical strength of calcium phosphate cement (CPC). The characteristics of the PCPCs were compared to those of cement incorporated with citric acid. The diametral tensile and compressive strengths of the CPC incorporated with g-PGA were significantly higher than that of cement incorporated with citric acid at equivalent concentrations (p<0.05). The maximal diametral tensile and compressive strengths of the CPC incubated for 1 week in physiological saline solution were approximately 18.0 and 50.0 MPa, respectively. However, the initial setting time of the PCPC was much slower than that of CPC incorporated with citric acid. The formation of ionic complexes between calcium ions and g-PGA was observed using FT-IR spectroscopy. Hydroxyapatite (HA) formation was retarded by g-PGA incorporation according to scanning electronic microscopy (SEM) and powder X-ray diffraction (XRD) observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.