Abstract
In recent years, polymeric materials with the ability to self-assemble into micelles have been increasingly investigated for application in various fields, mainly in biomedicine. Micellar morphology is important and interesting in the field of drug transport and delivery since micelles can encapsulate hydrophobic molecules in their nucleus, improve the solubility of drugs, have active molecules in their outer layer, and, due to their nanometric size, they can take advantage of the EPR effect, prolong circulation time and avoid renal clearance. Furthermore, bioactive molecules (could be joined covalently or by host-host interaction), such as drugs, bioimaging molecules, proteins, targeting ligands, "cross-linkable" molecules, or linkages sensitive to internal or external stimuli, can be incorporated into them. The confined multivalent cooperativity and the ability to modify the dendritic structure provide versatility to create and improve the amphiphiles used in the micellar supramolecular field. As discussed in this review, the most studied structures are hybrid copolymers, which are formed by the combination of linear polymers and dendrons. Amphiphilic dendrimer micelles have achieved efficient and promising results in both in vitro and in vivo tests, and this encourages research for their future application in nanotherapies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.