Abstract

In this study, we intended to evaluate the performance of olefin-based drilling fluids after addition of cellulose nanocrystal (CNC) derivatives. For this purpose, firstly, cellulose nanocrystals, produced from sulfuric acid hydrolysis of cotton fibers, were functionalized with poly(N-isopropylacrylamide) (PNIPAM) chains via free radicals. The samples were then characterized via Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), confocal microscopy, dynamic light scattering (DLS), and zeta potential measurements in water. The FTIR and NMR spectra exhibited the characteristic signals of CNC and PNIPAM groups, indicating successful grafting. As expected, X-ray diffractograms showed that the crystallinity of CNCs reduces after chemical modification. TGA revealed that the surface-functionalized CNCs present higher thermal stability than pure CNCs. The confocal microscopy, zeta potential, and DLS results were consistent with the behavior of cellulose nanocrystals decorated by a shell of PNIPAM chains. The fluids with a small amount of modified CNCs presented a much lower volume of filtrate after high-temperature and high-pressure (HTHP) filtration tests than the corresponding standard fluid, indicating the applicability of the environmentally friendly particles for olefin-based drilling fluids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.