Abstract
This paper demonstrates the current state-of-the-art in low-cost, low loss ruggedized polymer-based 3-D printed G-band (140 to 220 GHz) metal-pipe rectangular waveguide (MPRWG) components. From a unique and exhaustive up-to-date literature review, the main limitations for G-band split-block MPRWGs are identified as electromagnetic (EM) radiation leakage, assembly part alignment and manufacturing accuracy. To mitigate against leakage and misalignment, we investigate a ‘trough-and-lid’ split-block solution. This approach is successfully employed in proof-of-concept thru lines, and in the first polymer-based 3-D printed 90° twist and symmetrical diaphragm inductive iris-coupled bandpass filters (BPFs) operating above 110 GHz. An inexpensive desktop masked stereolithography apparatus 3-D printer and a commercial copper electroplating service are used. Surface roughness losses are calculated and applied to EM (re-)simulations, using two modifications of the Hemispherical model. The 7.4 mm thru line exhibits a measured average dissipative attenuation of only 12.7 dB/m, with rectangular-to-trapezoidal cross-sectional distortion being the main contributor to loss. The 90° twist exhibits commensurate measured performance to its commercial counterpart, despite the much lower manufacturing costs. A detailed time-domain reflectometry analysis of flange quality for the thru lines and 90° twists has also been included. Finally, a new systematic iris corner rounding compensation technique, to correct passband frequency down-shifting is applied to two BPFs. Here, the 175 GHz exemplar exhibits only 0.5% center frequency up-shifting. The trough-and-lid assembly is now a viable solution for new upper-mm-wave MPRWG components. With this technology becoming less expensive and more accurate, higher frequencies and/or more demanding specifications can be implemented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.