Abstract

Acinetobacter baumannii is an opportunistic pathogen known for causing hospital-acquired infections. The natural habitat includes soil, water, sewage, and drains, but it is also detected in infected individuals' blood, pus, and respiratory pathways. Due to its resilient nature, it is known to be a causative agent for outbreaks. Therefore, it is crucial to understand the genetic similarity between clinical and environmental isolates. The study aimed to find the genetic relationships between clinical and environmental isolates using PCR-based typing methods such as enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR), random amplified polymorphic DNA (RAPD), and repetitive extragenic palindromic sequence-based PCR (Rep-PCR). Additionally, outer membrane protein (OMP) and whole cell protein (WCP) profiles were also used. The PCR-based methods, ERIC-PCR and Rep-PCR, showed decreased genetic similarity between clinical and environmental isolates (66% and 58%, respectively). However, RAPD showed relatively higher genetic similarity (91%). The OMP and WCP profiles showed varied banding patterns between the clinical and environmental isolates in the 29-43 kDa region. The PCR-based methods proved to be a reliable and reproducible technique. The OMP and WCP profiles, though not as discriminatory as the molecular typing methods, could help identify the most and least commonly occurring protein bands and thus help in typing clinical and environmental A. baumannii isolates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call