Abstract

The solution synthesis of rhodium nanoparticles (Rh NPs) was achieved from the organometallic complex [Rh(η3-C3H5)3] under mild reaction conditions in the presence of a polymer (PVP), a monophosphine (PPh3) and a diphosphine (dppb) as a stabilizer, leading to very small Rh NPs of 2.2, 1.3 and 1.7 nm mean size, with PVP, PPh3 and dppb, respectively. The surface properties of these nanoparticles were compared using a model catalysis reaction namely, hydrogenation of cyclohexene, first under colloidal conditions and then under supported conditions after their immobilization onto an amino functionalized silica-coated magnetite support. PVP-stabilized Rh NPs were the most active catalyst whatever the catalytic conditions as a result of a strong coordination of the phosphine ligands at the metal surface that blocks some surface atoms even after several recycles of the supported nanocatalysts and limit the reactivity of the metallic surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.