Abstract
The present investigation reports polymer topology design principle for programming the enzymatic biodegradation and delivery of anticancer drugs at the intracellular compartments of breast and cervical cancers. To accomplish this goal, new classes of biodegradable amphiphilic block and random copolymers based on hydrophilic carboxylic-functionalized polycaprolactone (CPCL) and hydrophobic polycaprolactone (PCL) units were designed via ring-opening polymerization methodology. The interchain interactions and their packing were directly controlled by the topology of the polymers, and the block copolymers were found to be as semicrystalline materials. These amphiphilic block and random polymers were readily dispersible in water, and they self-assembled into <200 nm nanoparticles. These nanoparticles exhibited excellent capability for loading anticancer drug doxorubicin (DOX) in the hydrophobic pocket. In vitro drug release kinetics revealed that the polymer nanoscaffolds were stable under physiological condi...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.