Abstract

Freestanding films of soft matter drain via stratification due to confinement-induced structuring and layering of supramolecular structures such as micelles. Neutral polymers, added as rheology modifiers to cosmetics, foods, pharmaceuticals, and petrochemical formulations, often interact with monomers and micelles of surfactants, forming polymer-surfactant complexes. Despite many studies that explore interfacial and bulk rheological properties, the corresponding influence of polymer-surfactant complexes on foam drainage and lifetime is not well understood and motivates this study. Here, we report the discovery and evidence of drainage via stratification in foam films formed with polymer-surfactant (PEO-SDS) complexes. We show that the stratification trifecta of coexisting thick-thin regions, stepwise thinning, and nanoscopic topological features such as nanoridges and mesas can be observed using IDIOM (interferometry, digital imaging, and optical microscopy) protocols we developed for nanoscopic thickness mapping. We determine that for polymer concentrations below overlap concentration and surfactant concentrations beyond the excess micelle point, polymer-surfactant complexation impact the nanoscopic topography but not the step size, implying the amplitude of disjoining pressure changes, but periodicity remains unchanged.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call