Abstract

The ongoing demand for the development of intelligent devices has greatly inspired the development of metallic nanostructure incorporated composite electrospun mats. The astounding characteristics of the metallic nanoparticle-loaded hybrid assemblies, such as antimicrobial, charge transfer, energy storage, etc., have been known to precisely contribute to the target applications with enhanced functional efficacy. In this review, the recent advances in the development of multifunctional transition metal-based electrospun nanofibrous materials (ENMs) for designing high-performance sensors, biomedical and electrochemical devices are discussed. The influence of various transition metals and their oxides on the physico-mechanical performance of various ENMs has been critically dealt with. Further, the currently employed fabrication techniques for designing ENM-based advanced engineered nanomaterials have also been thoroughly summarized. Finally, prospects on the future challenges in the development of ENMs are discussed. This review may provide insightful inspiration for designing, utilization, and performance enhancement for designing novel ENM-based devices. Thus, the review not only highlights the modern design principles and recent breakthroughs in emerging applications but also brings forth a fresh perspective for upcoming research in the field of transition metal-based ENMs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.