Abstract
Poly(2-methyl-2-oxazoline) (PMOZ), poly(2-propyl-2-oxazoline) (PnPOZ) and poly(2-isopropyl-2-oxazoline) (PiPOZ) were synthesized by hydrolysis of 50kDa poly(2-ethyl-2-oxazoline) (PEOZ) and subsequent reaction of the resulting poly(ethylene imine) with acetic, butyric and isobutyric anhydrides, respectively. These polymers were characterized by proton nuclear magnetic resonance, FTIR spectroscopy, powder X-ray diffraction, and differential scanning calorimetry. The poly(2-oxazolines) as well as poly(N-vinyl pyrrolidone) (PVP) were used to prepare solid dispersions with haloperidol, a model poorly soluble drug. Dispersions were investigated by powder X-ray diffractometry, differential scanning calorimetry and FTIR spectroscopy. Increasing the number of hydrophobic groups (-CH2- and -CH3) in the polymer resulted in greater inhibition of crystallinity of haloperidol in the order: PVP>PnPOZ=PEOZ>PMOZ. Interestingly, drug crystallization inhibition by PiPOZ was lower than with its isomeric PnPOZ because of the semi-crystalline nature of the former polymer. Crystallization inhibition was consistent with drug dissolution studies using these solid dispersions, with exception of PnPOZ, which exhibited lower critical solution temperature that affected the release of haloperidol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.