Abstract
We report a polymer-stabilized liquid crystal (LC) microlens array with a large dynamic range and fast response time. The top substrate has a planar indium-tin oxide (ITO) electrode, while the bottom substrate has two patterned ITO electrodes for generating a fringing field and uniform longitudinal field. The fringing field is utilized to create the desired gradient refractive index profile in the LC/monomer layer, which is later stabilized by UV curing to form polymer networks. To tune the focal length, we apply a longitudinal field to change the lens shape. This microlens array offers several attractive features, such as large dynamic range, fast response time, and good mechanical stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.