Abstract
We study a noncanonical Hilbert space representation of the polymer quantum mechanics. It is shown that the Heisenberg algebra gets some modifications in the constructed setup, from which a generalized uncertainty principle will naturally come out. Although the extracted physical results are the same as those obtained from the standard canonical representation, the noncanonical representation may be notable in view of its possible connection with the generalized uncertainty theories suggested by string theory. In this regard, by considering a Snyder-deformed Heisenberg algebra, we show that since the translation group is not deformed, it can be identified with a polymer-modified Heisenberg algebra. In the classical level, it is shown that the noncanonical Poisson brackets are related to their canonical counterparts by means of a Darboux transformation on the corresponding phase space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.