Abstract

Using scaling arguments to model peripheral chromatin localized near the inner surface of the nuclear envelope (NE) as a flexible polymer chain, we discuss the structural properties of the peripheral chromatin composed of alternating lamin-associated domains (LADs) and inter-LADs. Modeling the attraction of LADs to NE by de Gennes' self-similar carpet, which treats the chromatin layer as a polymer fractal, explains two major experimental observations. (i) The high density of chromatin close to the nuclear periphery decays to a constant density as the distance to the periphery increases. (ii) Due to the decreasing mesh size towards the nuclear periphery, the chromatin carpet inside NE excludes molecules (via nonspecific interactions) above a threshold size that depends on the distance from the nuclear periphery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.