Abstract

Compared with the conventional planar structure, a wire-shaped polymer solar cell which is weavable exhibits unique and promising applications. However, it is rare to realize such a useful structure in polymer solar cells due to the difficulty in finding appropriate electrodes. Herein, we have fabricated polymer photovoltaic wires by using aligned carbon nanotube fibers as electrodes. The high flexibility, high electrical conductivity, and elaborate nanostructure of the nanotube fiber electrode enables an effective charge separation and transport. The resulting wire cell showed an open-circuit voltage, short-circuit current density and fill factor of 0.42 V, 0.98 mA cm−2 and 0.36, respectively, which produce an energy conversion efficiency of 0.15%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.