Abstract
ABSTRACTElectrohydrodynamic (EHD) instabilities can be induced in polymers by placing a polymer film above its Tg in a strong electric field between two capacitor plates or electrodes. The polymer experiences an electrostatic stress at the interface between the polymer and air due to a mismatch in their dielectric constants. This stress, along with thermal fluctuations, induces small magnitude capillary waves in the polymer film, and the minima and maxima of those waves experience slightly different electric field strengths. In a sufficiently strong electric field, the capillary wave maxima, where the distances between the polymer film and the top electrode(s) are the smallest, are eventually drawn up to the top electrode. The wavelength of the instabilities in the film and the ability of the polymer to be drawn upward is a dependent on the competition between surface tension forces and the electrostatic stress imparted on the polymer. While EHD instabilities are typically used to pattern polymer surfaces on a nanometer-scale, instabilities have been induced in polymer films with air gaps up to 500 μm. Upper electrodes with non-planar structures have also been used to induce instabilities in polymer films, resulting in patterned polymer surfaces without contact. Size, shape, arrangement, and placement of the upper electrode relative to the polymer film and lower electrode, as well as the processing conditions such as temperature and applied voltage, can all be modified to produce a desired array of structures with tailored performance characteristics. Patterned polymer surfaces can provide high-index contrast over a periodic matrix with 3-dimensional element shapes. The dielectric contrast and array pitch and height can be tuned to control specular reflection and achieve specific scattering characteristics. Surfaces with tailored scattering characteristics in the aforementioned ranges could be useful in producing frequency-selective windows for glare reduction, anti-reflective solar cells with enhanced efficiency, surface waveguides and whispering gallery-mode resonator arrays for integrated photonics and sensors, and surfaces with controlled emissivity for directed heat dissipation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.