Abstract
In this work, we successfully developed a fluorinated cross-linked polymer Bragg waveguide grating-based optical biosensor to detect effective drug concentrations of ginkgolide A for the inhibition of pulmonary microvascular endothelial cell (PMVEC) apoptosis. Fluorinated photosensitive polymer SU-8 (FSU-8) as the sensing core layer and polymethyl methacrylate (PMMA) as the sensing window cladding were synthesized. The effective drug concentration range (5–10 µg/mL) of ginkgolide A for inhibition of PMVEC apoptosis was analyzed and obtained by pharmacological studies. The structure of the device was optimized to be designed and fabricated by direct UV writing technology. The properties of the biosensor were simulated with various refractive indices of different drug concentrations. The actual sensitivity of the biosensor was measured as 1606.2 nm/RIU. The resolution and detection limit were characterized as 0.05 nm and 3 × 10−5 RIU, respectively. The technique is suitable for safe and accurate detection of effective organic drug dosages of Chinese herbal ingredients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.