Abstract
Polymer nanoparticles are prepared by self-assembly of visible light and pH sensitive perylene-functionalized copolymers which are synthesized by quaternization between 1-(bromomethyl)perylene and the dimethylaminoethyl units of poly(dimethylaminoethyl methacrylate) (PDMAEMA). The perylene-containing polymethacrylate segments afford the system visible light responsiveness and the unquaternized PDMAEMA segments afford the system pH responsiveness. The self-assembled nanoparticles exhibit a unique dual stimuli response. They can be photocleaved under visible light irradiation, shrunken to smaller nanoparticles at high pH, and swollen at low pH. The structural change endows the nanoparticle with great potential as a sensitive nanocarrier for controlled release of Nile Red and lysozyme under this stimulation. The visible light responsiveness and synergistic effect on the release of loaded molecules with the dual stimulation may obviate the need for harsh conditions such as UV light or extreme pH stimulation, rendering the system more applicable under mild conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.