Abstract

Complexation of phospholipid lipsomes with a cationic polymer, poly(N-ethyl-4-vinylpyridinium bromide) (PEVP), and subsequent interliposomal migration of the adsorbed macromolecules, have been investigated. Liposomes of two different charge types were examined: (a) a liposomal system, with an overall charge near zero, consisting of zwitterionic phosphatidylcholine (egg lecithin, EL) with added doubly anionic phospholipid, cardiolipin (CL(2-)), and cationic dihexadecyldimethylammonium bromide (HMAB(+)), in a CL(2-)/HMAB(+) charge-to-charge ratio of 1:1; (b) an anionic liposomal system composed of an EL/CL(2-) mixture plus polyoxyethylene monocetyl ether (Brij 58). Both three-component systems were designed specifically to preclude liposomal aggregation upon electrostatic association with the PEVP, a phenomenon that had complicated analysis of data from several two-component liposomes. PEVP macromolecules were found from fluorescence experiments to migrate among the charge-neutral EL/CL(2-)/HMAB(+) liposomes. In the case of anionic EL/CL(2-)/Brij liposomes, a combination of fluorescence and laser microelectrophoresis methods showed that PEVP macromolecules travel from liposome to liposome while being electrostatically associated with anionic lipids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.