Abstract

Polymer metallization via cold spray additive manufacturing is an emerging thermal spray approach for deposition of thick metallic coatings on polymers and fiber-reinforced composites that promises high productivity, ecofriendliness, and scalability of the coating process. In polymer metallization via cold spray, solid metallic powder is accelerated by a supersonic stream of preheated gas and propelled toward a polymer substrate, where it is built layer-by-layer via impact-induced heating and particle deformation. Since the pioneering study at Cambridge in 2006, nearly 50 experimental reports on polymer metallization via cold spray have been published, half of which have appeared within the past three years. This review distinguishes cold spray from other thermal spray methods, analyzes the peculiarities of cold spraying on polymers and fiber-reinforced composites, outlines the historical establishment of the field, and summarizes the available literature on polymer metallization via cold spray. The major focus here is on the influence of the cold spray process parameters on the deposition efficiency, adhesion strength, electrical conductivity and other properties of metallic coatings formed on polymers and fiber-reinforced composites. The promising applications of cold spray additive manufacturing in lightning strike protection, electroplating, osseointegration, antifouling, antivirus, e.g. anti-Covid-19 surfaces, and other surface functionalizations have been reviewed. Finally, recommendations were given on how to enhance the data reuse in future studies on polymer metallization via cold spray.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.