Abstract
Polymer-based magnetic microactuators have been fabricated with hot embossing technique and layer-by-layer (LbL) nano self-assembly. Silicon molds are fabricated with conventional UV lithography and wet etching techniques. Hot embossing is used to transfer the patterns from silicon molds to polymethylmethacrylate (PMMA) sheets. The overall processing time for the pattern transfer is less than 20 min. Low-cost devices with massive and rapid replication can be fabricated. Six layers of magnetic iron oxide (Fe2O3) nanoparticles are LbL self-assembled on the PMMA surface as the magnetically sensitive material. Positive photoresist PR1813 is used as the sacrificial layer to protect the gold electrode on the back side of the membrane. LbL nano self-assembly technique provides a simple method to obtain the magnetic film with low cost, short processing time, simple fabrication steps at room temperature. The volume of the magnetic material can be precisely controlled by the number of nano-assembled iron oxide layers. The mechanical, electrical, and magnetic properties of the microactuator are characterized by a laser interferometer. The natural frequency of the actuator is approximately 151 Hz; and the maximum deflection amplitude is about 34 nm. At all frequencies, the increase of the magnetic field increases the deflection amplitude which is in agreement with the theoretical equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.