Abstract

Some issues in pharmaceutical therapies such as instability, poor membrane permeability, and bioavailability of drugs can be solved by the design of suitable delivery systems based on the combination of two pillar classes of ingredients: polymers and lipids. At the same time, modern technologies are required to overcome production limitations (low productivity, high energy consumption, expensive setup, long process times) to pass at the industrial level. In this paper, a summary of applications of polymeric and lipid materials combined as nanostructures (hybrid nanocarriers) is reported. Then, recent techniques adopted in the production of hybrid nanoparticles are discussed, highlighting limitations still present that hold back the industrial implementation.

Highlights

  • Nanoparticle (NP) technology represents a revolutionary drug delivery platform that enhances the conveyance of active molecules to maximize their therapeutic index and to minimize undesirable side-effects, improving the treatment of several diseases [1,2]

  • In light of the above, in recent years, an attempt has been made to merge the advantages of polymeric and lipid materials in a single smart carrier system by suitable technique and through a careful selection of biocompatible polymer–lipid combinations, which guarantee a high affinity with biological membranes, allow a controlled drug release over a prolonged period of time, and provide the possibility to co-encapsulate therapeutics with different properties [30,31]. Among these new blended particles, the most explored and appreciated are the lipid–polymer hybrid nanoparticles (LPHNs) and the liposomes covered with polymers, especially chitosan, carriers capable of loading and transporting a wide range of functional molecules from anticancer to vitamins, peptides, proteins, gene material, metallic inclusions, cells, and other therapeutics [32]

  • Examples of improved characteristics in terms of functional activity of polymer–lipid nanostructures discussed in the literature were reported

Read more

Summary

Introduction

Nanoparticle (NP) technology represents a revolutionary drug delivery platform that enhances the conveyance of active molecules to maximize their therapeutic index and to minimize undesirable side-effects, improving the treatment of several diseases [1,2]. Among these new blended particles, the most explored and appreciated are the lipid–polymer hybrid nanoparticles (LPHNs) and the liposomes covered with polymers, especially chitosan, carriers capable of loading and transporting a wide range of functional molecules from anticancer to vitamins, peptides, proteins, gene material (see in following paragraphs), metallic inclusions, cells, and other therapeutics [32] (in Table 3 are several examples of LPHNs loaded with different active ingredients and produced by different preparation methods). LPNs find application in the bioimaging field as delivery systems for contrast agents (diagnostic tools) [48,56]

Innovations and Performances of Production Technologies
Conclusions and Perspectives
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call