Abstract

Here we present a new approach to improve fixation of radionuclides on contaminated surfaces and eliminate their migration after nuclear accidents. The approach consists in fabrication of latex composite coatings, which combine properties of polymeric dust-suppressors preventing radionuclides migration with aerosols and selective inorganic sorbents blocking radionuclides leaching under contact with ground waters and atmospheric precipitates. Latex/cobalt hexacyanoferrate(II) (CoHCF) composites selective to cesium radionuclides were synthesized via "in situ" growth of CoHCF crystal on the surface of carboxylic or amino latexes using surface functional groups as ion-exchange centers for binding precursor ions Co(2+) and [Fe(CN)6](4-). Casting such composite dispersions with variable content of CoHCF on (137)Cs-contaminated sand has yielded protective coatings, which reduced cesium leaching to 0.4% compared to 70% leaching through original latex coatings. (137)Cs migration from the sand surface was efficiently minimized when the volume fraction of CoHCF in the composite film was as low as 0.46-1.7%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.