Abstract

Xylenes are common aromatic volatile organic compounds, which can cause severe environmental pollution and healthy issues. The current instrumental detection methods are generally expensive, time-consuming, complex, and unable to be used for on-site detection. It is thus highly desirable to develop an efficient method for the detection of xylenes. In this study, we report the development of a polymer infiltrated SiO2 inverse opal photonic crystal (IOPC) for selective detection of xylene vapors. Poly(4-vinylbenzyl chloride-co-methyl methacrylate) (P(VBC-co-MMA)), which shows strong affinity towards xylenes because of their similar solubility parameters, was synthesized and infiltrated into SiO2 IOPC (P(VBC-co-MMA)-SiO2 IOPC). The resulting P(VBC-co-MMA)-SiO2 IOPC sensor shows color change from green to red upon exposure to xylene vapors as the diffusion and adsorption of gaseous xylenes increased the effective refractive index of the IOPC. It shows good sensitivity with a limit of detection of 0.51, 0.41 and 0.17 μg mL−1 for o-xylene, m-xylene, and p-xylene, respectively. The sensor also shows excellent selectivity for xylenes over other organic vapors. In addition, the P(VBC-co-MMA)-SiO2 IOPC sensor demonstrates quick response and good reversibility. This polymer infiltrated IOPC sensor provides a universal strategy for the detection of organic vapors through building a sensor using polymers with similar solubility parameters to targeting vapors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.