Abstract

Fe(III) complex of 2-phenylbenzimidazole has been covalently anchored on polymer and characterized by elemental analysis, FT-IR, far-IR, BET surface area measurements, UV–Vis/DRS spectroscopy, thermo-gravimetric analysis and magnetic moment measurements by VSM which confirmed an octahedral environment around Fe(III) in the bound complex. The photocatalytic performance of this complex was evaluated in the photodegradation of dyes in presence of H2O2 as an oxidizing agent. Suitable reaction conditions have been optimized by considering the effects of various reaction parameters such as pH, oxidants, concentration of dye, H2O2 and catalyst for the maximum degradation of dye. The photodegradation was found to be 100% with complete mineralization in 150 min. The comparison of photocatalytic efficiency of the catalyst under visible light, sunlight and dark conditions are accomplished. Comparison between catalytic activity of the polymer-supported complex and unbound complex demonstrated that the polymer-supported complex was more active. Photocatalytic performance of PS-Fe(III)PBMZL was also compared with commercial TiO2 (P25). This heterogeneous complex retained its activity up to 8 runs. A tentative mechanism has been proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call