Abstract

The development of low-cost materials for charge-selective contacts that provide good energetic alignment with perovskite active layers, favorable thermal properties, and lead to efficient photoconversion is becoming an increasingly important aspect of the perovskite solar cell (PSC) field. Presented here is a series of polymers based on a one-pot polymerization of aryl dihalides with primary aryl amines to produce solution-processable polymers in high yield, with simple purification, and promising properties for high performing P-I-N PSC devices. How these properties can be tuned by careful selection of the reactant chemical moieties is discussed. Through this strategy, a wide range of relevant properties such as glass transition temperature, highest occupied molecular orbital tuning, and polydispersity are explored. When implemented into devices using a triple-cation FAMACs perovskite active layer, the hole transport material series shows average power conversion efficiencies (PCE) in excess of 17%, which is comparable to controls using state-of-the-art poly(triarylamine). How different synthetic parameters such as the reaction time and purification protocol impact device performance is also investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.