Abstract

This paper focused on the utilization of the waste insect shell for the development of a novel biochar-based heterogeneous catalyst (ZnO/PVPmediate-BC-S) with a highly acid-base bifunctional catalytic capacity for the conversion of the insect lipid into biodiesel. The introduction of polyvinyl pyrrolidone (PVP) as a support mediator was believed to improve the textural properties of support and catalytic activity of the catalyst for the conversion reaction. Meanwhile, the physicochemical properties of the synthesized composite catalyst were characterized with XRD, SEM, TEM, XPS, BET, and FT-IR analysis. The high biodiesel yield (94.36%) was obtained at the defined condition (carbonization temperature = 600 °C, Zn(Ac)2 concentration = 0.3 mol/L, PVP amount = 35 wt%, reaction temperature = 65 °C, catalyst loading = 6 wt%, methanol/lipid molar ratio = 9:1). Moreover, the possible catalytic mechanism of the prepared catalyst was comprehensively described. In addition, the stability and reusability of the prepared catalyst during five reaction cycles were also demonstrated. Finally, the physicochemical properties of the biodiesel studied were well comparable with the ASTM standard as well as with the reported literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.