Abstract

We describe here the electrochemical properties and battery performance of polymer electrolytes composed of ABA-triblock copolymers and Li-glyme solvate ionic liquids (SILs), which consist of the [Li(glyme)]+ complex cation and bis(trifluoromethanesulfoly)amide ([TFSA]−) anion, to simultaneously achieve high ionic conductivity, thermal stability, and a wide potential window. Three different block copolymers, consisting of a SIL-incompatible A segment (polystyrene, PSt) and SIL-compatible B segments (poly(methyl methacrylate) (PMMA), poly(ethylene oxide) (PEO), and poly(butyl acrylate) (PBA)) were synthesized. The SILs were solidified with the copolymers through physical cross-linking by the self-assembly of the PSt segment. The thermal and electrochemical properties of the polymer electrolytes were significantly affected by the stability of the [Li(glyme)]+ complex in the block copolymer B segments, and the preservation of the SILs contributed to their thermal stabilities and oxidation stabilities greater...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.