Abstract

Poly(arylene ether sulfone)-based ionomers with sulfonate groups of varying acidity (perfluoroalkyl sulfonate, aryl sulfonate and alkyl sulfonate) were synthesized via borylation of aromatic C–H bonds and Suzuki coupling with sulfonated phenyl bromides. Properties of the ionomers, such as thermal stability, water uptake, ion exchange capacity, morphology and proton conductivity, were analyzed with respect to the effect of the sulfonate group. Superacidic fluoroalkyl sulfonated ionomers displayed much higher conductivity at low relative humidity than less acidic aryl and alkyl sulfonated ionomers in spite of their lower ion exchange capacities. The water uptake of the membranes correlated with their IEC, regardless of the acid group identity. The membranes with fluoroalkyl and alkyl sulfonate groups had similar hydration numbers as a function of RH, but the hydration number of the aromatic sulfonate sample was greater than the other polymers. Ionic domain structure analysis by atomic force microscopy, transmission electron microscopy and small-angle X-ray scattering revealed that all of the aromatic ionomers in this study had a small, disorganized phase structure. These results demonstrate that the primary influence on the proton conductivity of these randomly sulfonated copolymers is the acid strength while the nanoscale domain structure plays a secondary role in the low RH proton transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.