Abstract

A polymer host was prepared by admicellar polymerization of acrylic acid (AA) monomer coated on natural rubber (NR) to form a core-shell material (PAA-adp-NR). To form a polymer electrolyte, the electrical properties, including ionic conductivity and photovoltaic property, were measured to study the potential for use in the dye sensitized solar cells (DSSCs). PAA-adp-NR having the highest shell content (62%) showed the maximum ionic conductivity and energy conversion efficiency (η) at 1.86 mS cm-1 and 1.80%, respectively. The crosslinked structure of 62PAA-adp-NR provided η up to 1.99% (AA:N-methylene bisacrylamide (NMBA) at 500:1 mole ratio) and enhanced a long-term material stability. After oxidative polymerization with polypyrrole (PPy) on 62PAA-adp-NR, the conductivity increased up to 2.43 mS cm-1. In the case of crosslinked PAA-adp-NR/PPy, the conductivity and η showed the highest value at 5.48 mS cm-1 (AA:NMBA at 100:1 mole ratio) and 2.38% (AA:NMBA at 500:1 mole ratio), respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call